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Abstract
A set of nonlinear differential equations are developed that are analogous
to the spectral evolution equations of incompressible magnetohydrodynamics
(MHD). Because these equations possess little detail of MHD, apart from
salient symmetry properties, they provide a toy model in which aspects of
turbulent MHD can be understood readily. In the context of this model, the
eddy-damped quasinormal Markovian (EDQNM) closure often used in Navier–
Stokes turbulence is demonstrated to provide physically realizable spectra for
magnetohydrodynamicturbulence, if the eddy-damping functions are chosen to
satisfy certain symmetry properties. The requirements of physical realizability
are more demanding in MHD than in fluid turbulence. In the absence of mean
fields, this model demonstrates that the components of not only the turbulent
kinetic energy spectrum, but also the magnetic energy spectra, never become
negative. Another condition for realizability possessed by this model is that the
components of the turbulent cross-helicity spectrum always satisfy a Schwarz
inequality with respect to the corresponding components of the kinetic and
magnetic energy spectra.

PACS numbers: 47.27.−i, 47.27.Ak, 47.27.Eq, 52.35.Ra

1. Introduction

The concept of a turbulent magnetohydrodynamic dynamo that sustains mean magnetic fields
against resistive diffusion has permeated both the astrophysical and fusion literature ever since
Elsasser introduced the idea in the context of the Earth’s geomagnetic field [1]. The term
‘turbulent’ suggests that an appropriate method of analysing this dynamo phenomenon would
be to use the theoretical apparatus that has been employed with varying degrees of success in
the description of turbulent fluids. In particular, we wish to develop a theoretical description
of the evolution of the statistical behaviour of a physical turbulent magnetofluid. A particular
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application that has been of interest is the reversed-field pinch [2]. To arrive at this goal,
various hurdles need to be overcome.

First, the effects of loss mechanisms, such as resistivity and viscosity, must be included
in such a description. During the 1970s the concept of an absolute equilibrium ensemble for
the description of an ideal (i.e., lossless) turbulent magnetofluid was utilized [3]. Although
such analyses had the potential for contributing a broader understanding of the reversed-
field pinch than was afforded by Taylor’s hypothesis [4], the presence of high-wavenumber
equipartition—the standard Rayleigh–Jeans pathology of a classical equilibrium system—
prevented its realization. The total turbulent magnetic energy was divergent; two-point B
correlations, 〈B(r)B(r′)〉, possessed the term, δ(r − r′). [5]. To avoid this divergence in
this case of classical dynamics of continua, the presence of the loss mechanisms of resistivity
and viscosity that damp out the high-wavenumber spectrum must be taken into account.

Second, we need to be able to describe the evolution of inhomogeneous turbulence because
the reversed-field pinch is a bounded system. There has been scant literature relevant to the
application of formal closures to inhomogeneous fluid turbulence. However, one of us (LT)
has adapted his spectral expansion of solenoidal fields in a bounded magnetofluid [5] to the
description of the evolution of a bounded, incompressible, turbulent Navier–Stokes fluid [6].
This adaptation depended on the use of a random-phase approximation, an approximation that
has been supported by direct numerical simulations in the absence of any mean flow [7].

Third, we need to verify that our closure satisfies the most basic physical principles:
positivity of the components of both the turbulent magnetic energy spectrum and the turbulent
kinetic energy spectrum, as well as a Schwarz inequality for components of the cross-helicity
spectrum. If the spectra satisfy these minimum requirements, the closure is said to provide
realizable spectra. Verifying such satisfaction for the case of MHD turbulence demands a more
intricate analysis than was required for the case of purely Navier–Stokes turbulence in which
only a kinetic energy spectrum is involved [8]. This analysis is the subject of this paper. A
related earlier analysis of Pouquet et al [9] sets the cross-helicity at zero and then implements
the eddy-damped quasinormal Markovian (EDQNM) closure for a spatially homogeneous
MHD turbulence.

Fourth, we eventually shall need to be able to describe the turbulent dynamics when
nontrivial mean fields are present, such as the mean reversed magnetic field of the reversed-
field pinch. The fact that we have obtained a mean reversed magnetic field when we utilized
an absolute equilibrium ensemble description of a turbulent ideal magnetofluid, provides
the main impetus behind our goal of developing a statistical understanding of turbulent
magnetohydrodynamics in the presence of resistivity and viscosity. We would like to
demonstrate that the reversed mean magnetic field can be sustained when the system is tweaked
with dissipation in order to remove the Rayleigh–Jeans ultraviolet catastrophe induced by an
equilibrium’s high-wavenumber equipartition. In the case of inhomogeneous Navier–Stokes
turbulence, we have seen how a turbulent energy spectrum that is not reflection-invariant can
induce a mean flow [10]. This is reminiscent of the necessity for a parity violation in the
turbulence for the development of a mean magnetic field [11]. However, to treat turbulence
with such mean fields, we shall need to learn how to adapt and utilize an appropriate closure.

2. Schema of the Elsasser equations and invariants for incompressible
magnetohydrodynamics

The fundamental equations of incompressible magnetohydrodynamics are:

∂v(r, t)

∂t
+ v(r, t) · ∇v(r, t) = −∇p̃(r, t) + [∇ × B(r, t)] × B(r, t) + ν∇2v(r, t) (1)
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∂B(r, t)

∂t
= ∇ × [v(r, t) × B(r, t)] + η∇2B(r, t) (2)

∇ · v(r, t) = ∇ · B(r, t) = 0. (3)

In these equations, v and B respectively represent the fluid velocity and the Alfven velocity,
a quantity directly proportional to the magnetic field. The quantity p̃ represents the pressure
divided by the mass density. The parameters ν and η represent the kinematic viscosity and
resistivity, respectively.

If one replaces the velocity and magnetic field variables, v and B, by the Elsasser
variables, W + and W −, where

W + = v + B

2
W − = v − B

2
∇ · W± = 0 (4)

we obtain the following equation describing the evolution of their curls, 	ω± ≡ ∇ × W±:

∂ 	ω±
∂t

− γ2∇2 	ω± − γ1∇2 	ω∓

= ∇ × (W± × 	ω∓) + ∇ × (W∓ × 	ω±) + ∇ × ∇ × (W∓ × W±) (5)

where

γi = ν + (−)iη

2
i = 1, 2. (6)

Note that we can define the ideal MHD invariants: magnetic energy by 1
2E

B ≡ 1
2

∫
B2 d3r ,

the kinetic energy by 1
2E

K ≡ 1
2

∫
v2 d3r and the cross-helicity by HC ≡ ∫

v · B d3r [11].
Then

EB =
∫ (

W 2
+ + W 2

− − 2W + · W−
)

d3r

EK =
∫ (

W 2
+ + W 2

− + 2W + · W−
)

d3r (7)

HC =
∫ (

W 2
+ − W 2

−
)

d3r.

At this point, we could choose a specific geometry and set of boundary conditions; that
would lead us to a choice of an orthonormal solenoidal expansion basis for representing the
incompressible velocity and magnetic fields. For simplicity, we shall assume that both fields
satisfy the same boundary conditions and thus can be expanded in the same set of orthonormal,
solenoidal basis vectors, labelled by the appropriate triplet of numbers, which we shall denote
as k. (Examples would be a solenoidal basis satisfying periodic boundary conditions or, as
appropriate for bounded domains, a Chandrasekhar–Kendall basis formed from eigenvectors
of the curl operator [12]. We thus let

W +(r, t) =
∑

k

Xk(t) 	ξk(r) W −(r, t) =
∑

k

Yk(t) 	ξk(r). (8)

To emphasize the salient structure of these equations, a structure that will be seen to permit
realizability of the turbulent spectra under the closure, we make a further simplification. We
employ the time-honoured technique introduced by Herring [13]. We shall denote the triplet
of numbers, k, with a single scalar index, i, and let it vary from −N to N. This is the analogue
of letting sums vary from −k to +k. Similarly, many of the symmetry conditions that we shall
be imposing on various functions of these scalar indices are analogous to those that occur on
corresponding functions of wave-vector indices [6].
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By virtue of the symmetric structure of the Elsasser equations, we find the following
structure for the evolution of the spectral coefficients, Xi(t) and Yi(t):

dXi(t)

dt
+ αiXi(t) + βiYi(t) =

N∑
j,k=−N

cjkiXj (t)Yk(t)

dYi(t)

dt
+ αiYi(t) + βiXi(t) =

N∑
j,k=−N

cjkiYj (t)Xk(t).

(9)

The coefficients, αi and β i, represent dissipation coefficients. For simplicity, all of the
quantities in equations (9) are taken to be real.

One should note from equation (7) that when dissipation is absent, conservation of both
the total energy, EB + EK, and the cross-helicity, H C, is entirely equivalent to conservation of∫
W 2

+ d3r and
∫
W 2

− d3r . Because of the assumed orthonormality of the set of basis functions,
{	ξk(r)}, we note that this conservation implies that when α = 0 and β = 0,

N∑
i=−N

d[Xi(t)]2

dt
=

N∑
i=−N

d[Yi(t)]2

dt
= 0. (10)

From equations (9), we note then that conservation of the ideal MHD invariants of energy and
cross-helicity imposes the following symmetry condition on the coupling coefficients:

cjki + cikj = 0. (11)

Equations (9) and (11) constitute a toy model, which we shall investigate, that possesses those
salient features of the actual magnetohydrodynamic equations needed to assess the ability of
a turbulent closure (the eddy-damped quasinormal Markovian (EDQNM) closure) to preserve
the physical realizability of the turbulent spectra. At the same time, equations (9) dispense
with much of the additional dynamical and geometrical information that would be contained
in a faithful representation of MHD physics, but which would also obscure the necessary
requirements of a closure for yielding physically realizable turbulent spectra.

We are not introducing our toy model to ignore any of the essential issues relating to
the utility of the EDQNM closure for magnetohydrodynamic turbulence that contains cross-
helicity. Instead, we are introducing our model in the same spirit with which we are using
Herring’s stripped-down notation; i.e., because it is stripped of irrelevant details. An analysis
employing the complete MHD equations using a complete set of appropriate solenoidal basis
functions for their representation would result in unnecessarily obscuring the concepts and
would be relatively unwieldy. Our toy model, with its distillation of the essential physics and
symmetries, ‘helps the medicine go down.’ For examples of lengthy precursor analyses see
[6].

3. Requirements for realizability of the spectra

Let us define turbulent spectra through the following ensemble averages:

Ux
i (t) ≡ 〈Xi(t)Xi(t)〉 U

y

i (t) ≡ 〈Yi(t)Yi(t)〉 Uz
i (t) ≡ 〈Xi(t)Yi(t)〉. (12)

From their definition alone, they must satisfy the following two positivity conditions at all
times:

Ux
i (t) � 0 U

y

i (t) � 0 ∀ i. (13)

Also for all time, the following Schwarz inequality must be satisfied:∣∣Uz
i (t)

∣∣ �
[
Ux

i (t)U
y

i (t)
] 1

2 ∀ i. (14)
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From equations (7), we see that the spectral component of the magnetic energy is given by

EB
i = Ux

i + U
y

i − 2Uz
i . (15)

The corresponding spectral component of the kinetic energy is given by

EK
i = Ux

i + U
y

i + 2Uz
i . (16)

Finally, the spectral component of the cross-helicity is given by

HC
i = Ux

i − U
y

i . (17)

Thus knowledge of the spectra of Ux,Uy and Uz specifies the magnetic energy, kinetic energy
and cross-helicity spectra.

We shall show now that equations (13) and (14) guarantee that EB
i and EK

i are never

negative, and that
∣∣HC

i

∣∣ �
(
EB

i E
K
i

) 1
2 . First, we observe from equations (13), (15) and (16)

that EB
i and EK

i will each be non-negative if

∣∣Uz
i

∣∣ � Ux
i + U

y

i

2
. (18)

But clearly, [(
Ux

i

) 1
2 ± (

U
y

i

) 1
2

]2

2
=
(
Ux

i + U
y

i

2

)
± (

Ux
i U

y

i

) 1
2 � 0. (19)

With this result and equations (13) and (14), we observe that indeed

∣∣Uz
i

∣∣ �
(
Ux

i U
y

i

) 1
2 � Ux

i + U
y

i

2
(20)

guaranteeing that EB
i and EK

i are not negative.

We next demonstrate that equations (13) and (14) also guarantee that
∣∣HC

i

∣∣ �
(
EB

i E
K
i

) 1
2 .

We first note from the definitions, equations (4) and (8), that

Ux
i =

〈
(vi + Bi)

2

4

〉
U

y

i =
〈
(vi − Bi)

2

4

〉
Uz

i =
〈(

v2
i − B2

i

)
4

〉
. (21)

Then, using equations (13) and (14) we obtain(
Uz

i

)2 � Ux
i U

y

i (22)

or, equivalently,〈(
v2
i − B2

i

)2
〉
�
〈(
v2
i + B2

i

)2 − 4(viBi)
2
〉

(23)

which is tantamount to(
Hc

i

)2 = 〈
(viBi)

2〉 � 〈
v2
i

〉 〈
B2
i

〉 = EB
i E

K
i (24)

the Schwarz inequality satisfied by elements of the cross-helicity spectrum, HC
i .

4. The random phase approximation and the EDQNM closure

The physics of turbulence is not an exact science. There are no closed sets of equations. The
fundamental equation of Newtonian fluids is the Navier–Stokes equation. Its extension to
electrically conducting fluids and incorporating the Maxwell equations, normally ignoring the
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displacement current term, is the set of equations that governs magnetohydrodynamics. The
physical quantities of interest in turbulence are often statistical ones. The attempt at application
of the Navier–Stokes or MHD equations to the description of turbulent fluids therefore entails
taking averages. By virtue of the nonlinearity of the equations, the evolution of a mean field
is governed by the mean value of the product of two fields; the evolution of the mean value
of the product of the two fields is governed by the mean value of the product of three fields,
etc. A closure, such as EDQNM, entails the use of some plausible assumption that results in
replacing the infinite chain of equations by a finite set of equations. Most equations used in
physics are closures. In order to describe fluid motion, we do not solve an Avogadro number
of Newton’s equations describing the evolution of the discrete particles constituting the fluid.
We do not even utilize kinetic equations to describe fluid motion. We describe such motion
with a closure of these higher-level descriptions that we call the Navier–Stokes equation. As
we delve further into our physical understanding of particle physics, we even discover that the
‘exact’ models that we studied in graduate school turn out to be approximations or closures of
an ever more profound physics.

We shall now derive the evolution equations for the spectra, Ux
i (t), U

y

i (t) and Uz
i (t), of

the EDQNM closure when no mean fields are present.
From equations (9), we note that

d〈Xi(t)〉
dt

+ αi〈Xi(t))〉 + βi〈Yi(t)〉 =
N∑

j,k=−N

cjki〈Xj(t)Yk(t)〉 and X ⇐⇒ Y.

(25)

We shall postulate the following condition on our ensemble averages of bilinear products
for arbitrary values of j and k:

〈Xj(t)Xk(t)〉 = δjkU
x
k (t) 〈Yj (t)Yk(t)〉 = δjkU

y

k (t) 〈Xj (t)Yk(t)〉 = δjkU
z
k (t).

(26)

Ulitsky et al [7] have demonstrated that this approximation of ‘random phase’ appears to
be well satisfied in turbulent Navier–Stokes fluids when no mean flow is present. (One should
note that a certain subtlety is attached to the meaning of random phase in a finite ensemble
[14].) This seems intuitively justifiable when there are many modes present due to the mixing
produced by the nonlinear character of the equations. Furthermore, an absolute equilibrium
ensemble for this dynamical system would also satisfy equation (26). One should also note
that this random-phase approximation (RPA) is actually exact for the case of homogeneous
turbulence, where the ensemble average of the product of two Fourier coefficients associated
with wave vectors, k and p, necessarily satisfies 〈c∗(p)c(k)〉 ∝ δp,k.

After implementing RPA in the absence of mean fields, equation (25) becomes

d〈(Xi(t))〉
dt

=
N∑

j=−N

cjjiU
z
j (t). (27)

We shall impose the following additional symmetry condition on our coupling coefficients:

cjji = −c−j−ji . (28)

(This condition is a cartoon version of the condition that we found was satisfied in our analysis
of three-dimensional fluid turbulence in a slab [6]. We showed that the coupling coefficient,
which we termed g(k,p, q), satisfied g(k+,p+, q+) = −g∗(k−,p−, q−), where k− differed
from k+ only in reversing the sign of the y-component of k+—the y-direction being the direction
normal to the slab boundaries.)
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We shall be confining our attention to ensembles for which Ux
i (t) = Ux

−i (t), U
y

i (t) =
U

y

−i(t) and Uz
i (t) = Uz

−i (t). One notes from equations (27) and (28) that our ensembles will
not generate any mean fields, if none is initially present.

We now can use equations (9) to obtain evolution equations for bilinear and trilinear
products of the coefficients. We find

1

2

dUx
i (t)

dt
+ αiU

x
i (t) + βiU

z
i (t) =

N∑
j,k=−N

cjki〈Xi(t)Xj (t)Yi(t)〉 and X ⇐⇒ Y

(29)
d(XiXjYk)

dt
+ (αi + αj + αk)XiXjYk + βiYiXjYk + βjYjXiYk + βkXkXjXi

=
N∑

l,m=−N

(clmiXlYmXjYk + clmjXlYmXiYk + clmkYlXmXiXj) (30)

where we suppressed the time dependence of the spectral coefficients in the latter equation.
Now we make the standard ‘eddy-damped Markovian’ approximation. Instead of

integrating equation (30) to obtain the time dependence of the triple correlation, the Markovian
approximation is made that the triple correlation on the left is merely proportional to the right-
hand side of the equation. The proportionality is turned into an equality with the use of an
‘eddy-damping’ function, θ , a phenomenologically chosen function that is assumed never to
be negative. This yields the eddy-damped Markovian approximation,

〈XiXjYk〉t = θxikj (t)

N∑
l,m=−N

(clmi〈XlYmXjYk〉 + clmj 〈XlYmXiYk〉 + clmk〈YlXmXiXj 〉)t (31)

and a corresponding equation with all the x’s and y’s exchanged. Note that, without loss of
generality, the θ ’s can be defined to be symmetric under the exchange of their first and third
subscripts, i.e.

θxikj (t) = θxjki (t) θ
y

ikj (t) = θ
y

jki (t). (32)

We now make the quasinormal approximation that

〈AiAjAkAl〉 = 〈AiAj 〉〈AkAl〉 + 〈AiAk〉〈AjAl〉 + 〈AiAl〉〈AjAk〉 (33)

where the A’s represent any of the X’s or Y’s. This is termed quasinormal because, although
equation (33) is what one would expect, if the spectral coefficients were governed by a
normal distribution, we note from the equation just above that this moment produces a triple
correlation, which would be absent from any normal distribution.

Inserting both equations (31) and (33) into equations (29) and implementing equations(11)
and (32), as well as the random-phase approximation, equation (26), we obtain the EDQNM
closure:

1

2

dUx
i

dt
+ αiU

x
i + βiU

z
i =

N∑
j,k=−N

θxjkic
2
jkiU

y

k

(
Ux

j − Ux
i

)
+

N∑
j,k=−N

θxjkicjkickji
(
Uz

kU
z
j − Ux

j U
z
i

)

+
N∑

j,k=−N

θxjkicjkickij
(
Uz

kU
z
i − Ux

i U
z
j

)

+
N∑

j,k=−N

θxijjcjjickkiU
z
kU

z
j +

N∑
j,k=−N

θxiij cjiickkjU
z
kU

z
i . (34)



788 L Turner and J Pratt

The corresponding equation for the evolution of Uy

i is obtained by interchanging all x’s and
y’s. In a similar fashion, we can derive an equation for the evolution of Uz

i :

dUz
i

dt
+ 2αiU

z
i + βi

(
Ux

i + U
y

i

) =



 N∑

j,k=−N

θxijkc
2
jki

(
Uz

kU
z
j − Uz

i U
x
k

)

+
N∑

j,k=−N

θxijkcjkickji
(
Ux

k − Ux
i

)
U

y

j +
N∑

j,k=−N

θxijkcjkickij
(
Uz

kU
x
i − Uz

j U
z
i

)

+
N∑

j,k,=−N

θxijjcjjickkiU
z
kU

z
j +

N∑
j,k,=−N

θxijicjiickkjU
z
kU

x
i


 + [x ⇐⇒ y]


 . (35)

Suppose that initially, Uz
i (0) = Uz

−i (0), for arbitrary i. To maintain the absence of mean
fields throughout the evolution, we must maintain this symmetry in time. To do so, we shall
require that initially:

Ux
i (0) = Ux

−i (0) and U
y

i (0) = U
y

−i (0) ∀ i. (36)

Since the evolution equations, equations (34) and (35), are quadratic in the coupling constants,
this initial symmetry will be propagated in time if we require

θxijk = θx−i−j−k θ
y

ijk = θ
y

−i−j−k (37)

as well as the additional symmetry:

cijk = s c−i−j−k ∀ i, j, k (38)

where s is a subscript-independent constant equal to either +1 or −1. We shall impose this
symmetry on our coupling constants and assume that all of the U ’s are initially invariant under
sign-reversal of their subscripts. The evolution equations then reduce to:

1

2

dUx
i

dt
+ αiU

x
i + βiU

z
i =

N∑
j,k=−N

θxjkic
2
jkiU

y

k

(
Ux

j − Ux
i

)
+

N∑
j,k=−N

θxjkicjkickji
(
Uz

kU
z
j − Ux

j U
z
i

)

+
N∑

j,k=−N

θxjkicjkickij
(
Uz

kU
z
i − Ux

i U
z
j

)
(39)

1

2

dUy

i

dt
+ αiU

y

i + βiU
z
i =

N∑
j,k=−N

θ
y

jkic
2
jkiU

x
k

(
U

y

j − U
y

i

)
+

N∑
j,k=−N

θ
y

jkicjkickji
(
Uz

kU
z
j − U

y

j U
z
i

)

+
N∑

j,k=−N

θ
y

jkicjkickij
(
Uz

kU
z
i − U

y

i U
z
j

)
(40)

dUz
i

dt
+ 2αiU

z
i + βi

(
Ux

i + U
y

i

)

=



 N∑

j,k=−N

θxijkc
2
jki

(
Uz

kU
z
j − Uz

i U
x
k

)
+

N∑
j,k=−N

θxijkcjkickji
(
Ux

k − Ux
i

)
U

y

j

+
N∑

j,k=−N

θxijkcjkickij
(
Uz

kU
x
i − Uz

j U
z
i

) + [x ⇐⇒ y]


 . (41)

Before concluding this section, we shall show that the ideal MHD invariants remain
invariant under this closure. We shall use the general evolution equation forUx

i , equation (34),
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to demonstrate that
∑N

i=−N Ux
i is conserved in the lossless limit in which all of the αi’s and

all of the β i’s are set equal to zero. We wish to examine
∑N

i=−N

dUx
i (t)

dt . There will be five
sums on the right-hand side over dummy indices, i, j and k. Consider the first sum by itself.
By virtue of equations (11) and (32), the summand is antisymmetric under the interchange of
i and j. Hence this sum vanishes. Now consider the second and third sums jointly. If one
interchanges the dummy indices, i and j, everywhere in the third summand and makes use
of equations (11) and (32), one observes that it will precisely cancel the second summand.
Finally, similar interchange of the i and j dummy indices in the fifth summand and application
of equations (11) and (32) demonstrate that it will cancel the fourth summand. Of course,∑N

i=−N U
y

i will also be conserved since its evolution equation has precisely the same structure.
We thus conclude that this closure preserves the two ideal MHD invariants, total energy and
total cross-helicity.

5. Demonstration of realizability of the spectra in the absence of mean fields

In this section, we shall demonstrate that if the spectra initially satisfy the necessary physical
conditions for arbitrary k,

Ux
k (0) � 0 U

y

k (0) � 0 and
∣∣Uz

k (0)
∣∣ �

[
Ux

k (0)U
y

k (0)
] 1

2 (42)

then as these spectra evolve under the EDQNM equations, equations (39), (40) and (41), they
will continue to maintain these properties for all time.

Suppose some initially positive spectral element of Ux or Uy were to become negative.
Let us assume that there is a first element, Ux

i , to do so, at time t0. Then at this time, it must
have a negative time-derivative. (We are going to refrain in this paper from considering more
special cases such as t0 being a point of inflection.) We shall also assume that there has been
no violation of the Schwarz inequality, the third property listed just above. Let us evaluate
this derivative using equation (39), and observing that if Ux

i (t0) = 0, then necessarily also
Uz

i (t0) = 0. We find:

1

2

dUx
i

dt0
=

N∑
j,k=−N

[
θxjkic

2
jkiU

y

k U
x
j + θxjkicjkickjiU

z
kU

z
j

]
t0

. (43)

For arbitrary values of k, we may define a quantity, λk(t0), by:

λk(t0) = Uz
k (t0)[

Ux
k (t0)U

y

k (t0)
] 1

2

. (44)

The Schwarz inequality then guarantees that

|λk(t0)| � 1. (45)

We can then rewrite the above expression as

1

2

dUx
i

dt0
=

N∑
j,k=−N

θxjki

[
c2
jkiU

y

k U
x
j + cjkickjiλkλj

(
Ux

k U
x
j U

y

k U
y

j

) 1
2

]
t0

=
N∑

j,k=−N

θxjki

{
c2
jki

(
1 − λ2

j

)
U

y

k U
x
j +

1

2

[
λj cjki

(
U

y

k U
x
j

) 1
2 + λkckji

(
U

y

j U
x
k

) 1
2

]2
}
t0

. (46)

Using equation (45) and the given positive nature of all of the spectral elements of Ux and Uy

on the right-hand side of this equation, we conclude that
dUx

i (t0)

dt0
� 0. (47)
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This contradicts our assumption that Ux
i becomes negative at time t0. In a similar manner, we

can also show that none of the spectral elements of Uy can become negative at any time.
We shall again suppose that equations (42) are satisfied and now demonstrate that the

last of these, the Schwarz inequality, is also maintained for all time. Suppose that there is an
element, say the ith element, that first violates this inequality and does so at time ts. Then at
this time, we would find that[

Uz
i (ts)

]2

Ux
i (ts )U

y

i (ts )
= 1 (48)

and

d

dt

{ [
Uz

i (ts)
]2

Ux
i (ts)U

y

i (ts)

}
> 0. (49)

Observe that{
Ux

i (ts )U
y

i (ts )[
Uz

i (ts)
]2

}
d

dt

{ [
Uz

i (ts)
]2

Ux
i (ts)U

y

i (ts)

}
= 2U̇ z

i (ts)

Uz
i (ts )

− U̇ x
i (ts)

Ux
i (ts)

− U̇
y

i (ts )

U
y

i (ts )
. (50)

We now insert equations (34) and (35) to evaluate the time derivatives on the right-hand side:

2U̇ z
i (ts)

Uz
i (ts)

− U̇ x
i (ts )

Ux
i (ts )

− U̇
y

i (ts)

U
y

i (ts)
= −4αi − 2βi

[
Ux

i (ts)

Uz
i (ts)

+
U

y

i (ts )

Uz
i (ts)

]

+




2

N∑
j,k=−N

θxijkc
2
jki

(
Uz

kU
z
j

Uz
i

− Ux
k

)
+ 2

N∑
j,k=−N

θxijkcjkickji

(
Ux

k

Uz
i

− Ux
i

Uz
i

)
U

y

j

+ 2
N∑

j,k=−N

θxijkcjkickij

(
Uz

kU
x
i

Uz
i

− Uz
j

)
+ 2

N∑
j,k=−N

θxijjcjjickki
Uz

kU
z
j

Uz
i

+ 2
N∑

j,k=−N

θxijicjii ckkj
Uz

kU
x
i

Uz
i

+ 2αi + 2βi

Uz
i

Ux
i

− 2
N∑

j,k=−N

θxjkic
2
jki

(
Ux

j

Ux
i

− 1

)
U

y

k − 2
N∑

j,k=−N

θxjkicjkickji

(
Uz

kU
z
j

Ux
i

− Ux
j U

z
i

Ux
i

)

− 2
N∑

j,k=−N

θxjkicjkickij

(
Uz

kU
z
i

Ux
i

− Uz
j

)
− 2

N∑
j,k=−N

θxijjcjjickki
Uz

kU
z
j

Ux
i

− 2
N∑

j,k=−N

θxiij cjiickkj
Uz

kU
z
i

Ux
i


 + [x ⇐⇒ y]




ts

. (51)

We now must impose two new symmetry conditions on the eddy-damping functions:

θx = θy = θ (52)

θijk = θjik. (53)

Taking into account the already existing symmetry stated in equation (32), equation (52)
implies that the eddy-damping function is totally symmetric under the exchange of any two of
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its subscripts. Observing from equation (48) that at time ts

Ux
i

Uz
i

− Uz
i

U
y

i

= U
y

i

Uz
i

− Uz
i

Ux
i

= 0 (54)

we can simplify equation (51):

d

dts

[ (
Uz

i

)2

Ux
i U

y

i

]
=

2

N∑
j,k=−N

θijkU
z
kU

z
j

[
2c2

jki

Uz
i

− cjkickji

(
1

Ux
i

+
1

U
y

i

)]

+ 2
N∑

j,k=−N

θijkU
x
k U

y

j

(
2cjkickji

Uz
i

− c2
jki

U
y

i

− c2
kji

Ux
i

)

+ 2
N∑

j,k=−N

θijjU
z
kU

z
j cjjickki

(
2

Uz
i

− 1

Ux
i

− 1

U
y

i

)


ts

. (55)

No mean fields are present in the case under consideration. From the discussion following
equation (28), the final sum vanishes, since

∑
kckkiU

z
k = 0.

We again use equations (44) and (45), as well as λi = λ−1
i = ±1 implied by equation (48),

to rewrite equation (55) as

d

dts

[ (
Uz

i

)2

Ux
i U

y

i

]
=

2

N∑
j,k=−N

θijkλkλj
(
Ux

k U
y

k U
x
j U

y

j

) 1
2


 2c2

jkiλi(
Ux

i U
y

i

) 1
2

− cjkickji

(
1

Ux
i

+
1

U
y

i

)

+ 2
N∑

j,k=−N

θijkU
x
k U

y

j


2cjkickjiλi(

Ux
i U

y

i

) 1
2

− c2
jki

U
y

i

− c2
kji

Ux
i






ts

=

2

N∑
j,k=−N

θijkλkλj
(
Ux

k U
y

k U
x
j U

y

j

) 1
2


 2c2

jkiλi(
Ux

i U
y

i

) 1
2

− cjkickji

(
1

Ux
i

+
1

U
y

i

)

− 2
N∑

j,k=−N

θijkU
x
k U

y

j


 cjki(

U
y

i

) 1
2

− λickji(
Ux

i

) 1
2




2



ts

. (56)

We wish to prove that this quantity is not positive. If we make the total of the two sums as
large as possible and still find that it is not positive, then we shall be certain that the sum is
never positive. The second sum is clearly not positive. Each term in the first sum has an
overall factor of λkλj . We shall make the first sum as large as possible by letting this factor
have its largest possible magnitude, unity! Accordingly, we shall choose this factor for each
choice of j and k such that the associated summand will be positive. We shall define:

ejk ≡ λkλj (57)

so that

e2
jk = λ2

i = 1. (58)
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We then observe that

d

dts

[ (
Uz

i

)2

Ux
i U

y

i

]
�


2

N∑
j,k=−N

θijkejk
(
Ux

k U
y

k U
x
j U

y

j

) 1
2


 2c2

jkiλi(
Ux

i U
y

i

) 1
2

− cjki ckji

(
1

Ux
i

+
1

U
y

i

)

+ 2
N∑

j,k=−N

θijkU
x
k U

y

j


2cjkickjiλi(

Ux
i U

y

i

) 1
2

− c2
jki

U
y

i

− c2
kji

Ux
i




= −2
N∑

j,k=−N

θijk


Ux

k U
y

j

(
c2
jki

U
y

i

+
c2
kji

Ux
i

)
− 2λiejkc

2
jki

(
Ux

k U
y

k U
x
j U

y

j

Ux
i U

y

i

) 1
2




− 2
N∑

j,k=−N

θijkcjkickji


ejk(Ux

k U
y

k U
x
j U

y

j

) 1
2

(
1

Ux
i

+
1

U
y

i

)
− 2λi

Ux
k U

y

j(
Ux

i U
y

i

) 1
2




= −2
N∑

j,k=−N

θijk





(
Ux

k U
y

j

U
y

i

) 1
2

− λiejk

(
Ux

j U
y

k

Ux
i

) 1
2


 cjki




2

− 2
N∑

j,k=−N

θijkejk





(
Ux

k U
y

j

U
y

i

) 1
2

− λiejk

(
Ux

j U
y

k

Ux
i

) 1
2


 cjki




×




(
Ux

j U
y

k

U
y

i

) 1
2

− λiejk

(
Ux

k U
y

j

Ux
i

) 1
2


 ckji




= −
N∑

j,k=−N

θijk





(
Ux

k U
y

j

U
y

i

) 1
2

− λiejk

(
Ux

j U
y

k

Ux
i

) 1
2


 cjki

+ ejk



(
Ux

j U
y

k

U
y

i

) 1
2

− λiejk

(
Ux

k U
y

j

Ux
i

) 1
2


 ckji




2



ts

� 0. (59)

But this violates our assumption, equation (49). Thus the Schwarz inequality is maintained
by the EDQNM closure for the evolution of the spectra of MHD turbulence.

6. Summary

The so-called EDQNM closure that has been used in the study of Navier–Stokes turbulence
has been examined for its applicability to general MHD turbulence. The MHD equations
provide a more stringent test on the usefulness of the EDQNM closure because in MHD the
demands of realizability are more severe. Not only must the components of the turbulent
kinetic energy spectrum be positive semidefinite, but also the components of the turbulent
magnetic energy spectrum must be positive semidefinite. Furthermore, the components of
the turbulent cross-helicity spectrum must satisfy a Schwarz inequality with respect to the
components of the turbulent kinetic and magnetic energy spectra.

Because the demands of the notation involved in using the full MHD equations would
have diverted attention away from the essential details of analysing the applicability of the
EDQNM closure to MHD, we developed a stripped-down version, or toy model, of MHD in
which only the essential elements of symmetry were kept. In this study, we also assumed for
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reasons of simplicity that the magnetic fields and the velocity fields could be represented by
the same set of solenoidal basis vectors. This need not be the case. The usefulness of the
EDQNM closure remains to be explored for such cases.

We found that when certain symmetry conditions are placed on the eddy-damping
functions employed, an EDQNM closure does produce evolution equations that yield realizable
spectra. However, it seems to us that the required symmetry conditions are unduly severe;
whether the closure according to equation (31) is performed on 〈XiYjXk〉 or on 〈YiXjYk〉, the
same eddy-damping function must be used and additionally be symmetric under exchange of
any two of its three subscripts!

Had we instead worked with the primordial MHD equations that specify ∂v/∂t
and ∂B/∂t and obtained their implications for the evolution of the triple correlations,
〈vivj vk〉, 〈vivjBk〉, 〈viBjBk〉 and 〈BiBjBk〉, we would have found that all of the linear terms
in each of the evolution equations involved only one of the triple correlations in contrast to
equation (31). Nevertheless, had we gone to demand positivity of the spectral components of
the turbulent magnetic and kinetic energies, as well as a Schwarz inequality on the components
of the turbulent cross-helicity, we would again have found a highly restricted eddy-damping
function. Its limitations might be better understood if one were to develop a more fundamental
closure for MHD, such as a direct-interaction approximation [15] or a test-field model [16].
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